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Abstract
The (2 + 1)-dimensional sine-Gordon system is investigated via a generalized
bilinear operator representation. Plateau, basin, bowl and saddle-type ring
solitons are thereby constructed. It is indicated how iterated Moutard
transformations may be employed to extend the range of the method.

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

1. Introduction

Ring-like solitonic phenomena have been widely investigated. However, an impediment to
the analytic study of their interaction properties in sine-Gordon models in three dimensions
has been the non-integrability of

(
∂2
t − ∇2

)
ψ = sin ψ . The Davey–Stewartson and Nizhnik–

Veselov–Novikov systems are well established as integrable symmetric (2 + 1)-dimensional
extensions of the nonlinear Schrödinger and Korteweg–de Vries equations. The corresponding
integrable extension to three dimensions of the classical sine-Gordon equation is represented
by the (2 + 1)-dimensional sine-Gordon (2DsG) system as introduced by Konopelchenko and
Rogers [1, 2].

Localized solutions of (2 + 1)-dimensional soliton equations have proved of considerable
interest. Indeed, the discovery via Bäcklund transformations by Boiti et al [3] of ‘dromion’
type coherent solutions of the Davey–Stewartson I system provided renewed interest in the
study of three-dimensional soliton systems. Here, our concern is with localized excitations of
the 2DsG system.

Recently in [4, 5], a multi-linear form approach was introduced whereby new localized
solutions may be constructed for a range of nonlinear systems. This includes, inter alia,
not only Davey–Stewartson and Nizhnik–Veselov–Novikov equations but also Broer–Kaup–
Kuperschmidt and the generalized (N + M)-component AKNS systems. Here, that procedure
is adapted to the 2DsG system. A diversity of ring-like soliton solutions that exhibit complete
elastic interaction is thereby generated.
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2. The (2 + 1)-dimensional sine-Gordon system

In 1991, Konopelchenko and Rogers [1] constructed a (2 + 1)-dimensional master soliton
system via a reinterpretation and generalization of a class of infinitesimal Bäcklund
transformations originally introduced in a gasdynamics context by Loewner [6]. This (LKR)
system is characterized by its admittance of a matrix parametrization. A particular reduction
leads to a symmetric integrable extension of the classical sine-Gordon equation, namely,(

φx

sin θ

)
x

−
(

φy

sin θ

)
y

+
φyθx − φxθy

sin2 θ
= 0

(
φ′

x

sin θ

)
x

−
(

φ′
y

sin θ

)
y

+
φ′

yθx − φ′
xθy

sin2 θ
= 0

θt = φ + φ′.

(2.1)

The classical (1 + 1)-dimensional sG equation in lines of curvature coordinates is retrieved
in the reductions with φ′ = θy = φy = 0. The 2DsG system (2.1) is generated as the
compatibility condition of the particular LKR triad [2][
I∂x +

(
cos θ sin θ

sin θ −cos θ

)
∂y

]
ψ = 0

[
I∂t ∂y +

1

2

(
0 θt

−θt 0

)
∂y − 1

2 sin θ

(
φy cos θ − φx −φ′

y sin θ

φy sin θ φ′
y + φ′

x cos θ

)]
ψ = 0

[
I∂t ∂x +

1

2

(
0 θt

−θt 0

)
∂x − 1

2 sin θ

(
φx cos θ − φy −φ′

x sin θ

φx sin θ φ′
x + φ′

y cos θ

)]
ψ = 0.

(2.2)

Alternative representations of the 2DsG system prove convenient. Thus, on introduction
of the new independent variables

ξ = 1
2 (y − x) η = 1

2 (y + x)

the system may be rewritten as

θξηt + 1
2θηρξ + 1

2θξρη = 0 ρξη = 1
2 (θξθη)t (2.3)

where

ρξ = φ′
η − φη − θηt cos θ

sin θ
ρη = φξ − φ′

ξ − θξt cos θ

sin θ
. (2.4)

The introduction of new dependent variables u, v into (2.4) via the relation

ρ = 2vt θ = 2u (2.5)

leads to a compact version of the 2DsG system, namely

uξηt + uηvξt + uξvηt = 0 vξη = uξuη + v0 (2.6)

where the arbitrary function v0 ≡ v0(ξ, η) is here set to zero as in [7, 8]. The corresponding
Lax pair for the representation (2.6) with v0 = 0 reads(

∂ξ uξ

−uη ∂η

) (
ϕ1

ϕ2

)
= 0

(
∂η∂t + vηt uη∂t

−uξ∂t ∂ξ ∂t + vξt

)(
ϕ1

ϕ2

)
= 0. (2.7)

Since the discovery of the 2DsG system a decade ago, it has been the subject of wide
investigation not least because of its rich symmetry structure. A Bäcklund transformation was
constructed in [9] and certain coherent solitonic solutions thereby derived. Solitonic solutions
of the important reduction

θxyt − θxθyt cot θ + θyθxt tan θ = 0 (2.8)
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that arises in connection with triple orthogonal systems of surfaces, have been investigated
by Nimmo [10, 11]. Doubly periodic wave solutions have been constructed by Chow [16].
Localized solutions of the 2DsG system were constructed via a binary Darboux transformation
by Schief [12]. In [8], Nimmo and Schief constructed nonlinear superposition principles and
an associated integrable discretization of the 2DsG system. Localized solutions of the model
with nontrivial boundaries have been constructed by Dubrovsky and Konopelchenko [13] and
Dubrovsky and Formusatik [15]. Geometric aspects of the 2DsG system were investigated by
Schief [17]. Extensive symmetry group analysis of the system has been conducted by both
Clarkson et al [7] and Lou [18]. Radha and Lakshmanan [19] studied the Painlevé property for
the 2DsG system and have constructed dromion solutions. It emerges that the system contains
particular reductions to the PI, PIII and PV transcendents. In physical terms, it also contains
the important pumped Maxwell–Bloch system.

The 2DsG system has been discussed in the general context of three-dimensional
integrable systems in the monograph by Konopelchenko [20]. However, its complex structure
is such that a complete understanding of the model is yet to be achieved. In particular, the
question as to its admittance of saddle-type ring solitons with completely elastic interaction
properties has remained open. Here, the Hirota-operator based approach adopted in [5] is
applied to the 2DsG system to construct new solutions both with and without completely
elastic interaction properties. Plateau, basin, bowl and saddle-type ring solitons are thereby
constructed which exhibit completely elastic interaction properties. It is demonstrated how the
range of the procedure may be extended by the application of iterated Moutard transformations.

3. A generalized bilinear representation for the 2DsG system

The starting point for the procedure is to determine an appropriate multi-linear representation
for the system under consideration. In the present case of the 2DsG system (2.6) with v0 = 0,
if we set

u = ±i ln
f

g
+ u1 v = ln(fg) + v1 (3.1)

where {u1, v1} is an arbitrary seed solution, then we obtain the multi-linear representation

±ifg[Dξ DηDt + v1ξ tDη + v1ηtDξ ]f · g

+ u1η

[
(Dtf · g)(Dξf · g) + 1

2f 2DξDtg · g + 1
2g2DξDtf · f

]
(3.2)

+ u1ξ

[
(Dtf · g)(Dηf · g) + 1

2f 2DηDtg · g + 1
2g2DηDtf · f ] = 0

[±iDξDη + u1ηDξ + u1ξDη]f · g = 0

wherein the Hirota’s bilinear operators Dξ ,Dη,Dt are defined by

Dn
ξ D

m
η Dk

t f · g ≡ ∂n
ε1
∂m
ε2

∂k
ε3
f (ξ + ε1, η + ε2, t + ε3)g(ξ − ε1, η − ε2, t − ε3)

∣∣
ε1=0,ε2=0,ε3=0

.

(3.3)

If the seed solution {u1, v1} is set to zero (or constant), a known bilinear representation of the
2DsG system is retrieved [11].

Here to exploit the representation (3.2), we select a seed solution of the system (2.6) with
v0 = 0 in the form

u1 = 0 v1 = V1(ξ, t) + V2(η, t) (3.4)

with V1(ξ, t) ≡ V1 and V2(η, t) ≡ V2 being arbitrary functions. The multi-linear system (3.2)
then degenerates to a bilinear system in the form

[DξDηDt + V1ξ tDη + V2ηtDξ ]f · g = 0 DξDηf · g = 0. (3.5)
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To obtain solutions of this bilinear system, we adopt the ansatz

f = a0 + a1p + a2q + a3pq g = b0 + b1p + b2q + b3pq (3.6)

where a0 and b0 are arbitrary constants, p ≡ p(ξ, t), q ≡ q(η, t), a1 ≡ a1(t), a2 ≡ a2(t),

a3 ≡ a3(t), b1 ≡ b1(t), b2 ≡ b2(t) and b3 ≡ b3(t) are functions of their indicated arguments.
Detailed calculations via computer algebra (Maple) establish that the ansatz (3.6) allows
solution of the bilinear system (3.5) if the functions V1 and V2 are determined by

V1ξ t = (2A3pt + (A1 − c1)a0)pξ − 2(A3p + a0A2)pξt

a0(2A2p + A4) + A3p2
(3.7)

V2ηt = (a0(c1 + A1) − 2A5qt)qη + 2(A5q − a0A7)qηt

a0(A6 + 2A7q) − A5q2
(3.8)

where c1 ≡ c1(t) is an arbitrary function of t,

A1 = b2a1t + b1a2t − b0a3t A2 = a3b0 − b2a1

A3 = a3b1a0 − a2
1b2 − a1a2b1 + a3a1b0 A4 = b0a2 − a0b2

A5 = −a3a2b0 + a2
2b1 + a2b2a1 − a0b2a3 A6 = b0a1 − a0b1

A7 = b0a3 − b1a2

(3.9)

and the function b3 is fixed via

b3 = 1

a0
(b2a1 + b1a2 − b0a3). (3.10)

The quantities 2iuξη ≡ F and −2vξη ≡ G adopt the forms

F = ± 2(a1a2 − a3a0)pξqη

(a0 + a1p + a2q + a3pq)2
∓ 2(b1b2 − b3b0)pξqη

(b0 + b1p + b2q + b3pq)2
≡ ±(Ua − Ub) (3.11)

G = Ua + Ub. (3.12)

It is of interest to observe that the localized structures with representations of the type

Ua = 2(a1a2 − a3a0)pξ qη

(a0 + a1p + a2q + a3pq)2
(3.13)

constituent in (3.11), (3.12) have been isolated for a diversity of nonlinear (2 + 1)-dimensional
equations [5].

4. Classes of localized excitations of the 2DsG system and their interaction properties

The presence of the arbitrary functions p, q in the representations (3.11), (3.12) implies the
existence of a rich diversity of coherent structure solutions of the 2DsG system. Indeed,
the spectra of known types of localized solutions including ‘inter alia’, dromions, breathers,
instantons and peakons are all admitted by the 2DsG system by virtue of the representation
(3.11)–(3.12).

Clarkson at al [7] have shown that a special class of solutions of the 2DsG system may
be obtained by a linear superposition of solutions of its (1 + 1)-dimensional counterpart [7].
Thus, if {ũ, ṽ} and {û, v̂} are two solutions of (1 + 1)-dimensional sG equation, so that

ũzzt + 2ũzṽzt = 0 ṽzz = ũ2
z ûzzt + 2ûzv̂zt = 0 v̂zz = û2

z (4.1)

then

u = ũ(ξ + η, t) + û(ξ − η, t) v = ṽ(ξ + η, t) + v̂(ξ − η, t) (4.2)
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Figure 1. Pre- and post-interaction at t = −8 and t = +8 of two solitary waves for the potential
F of the 2DsG system: p is the (1 + 1)-dimensional kink–antikink solution (4.4) and q is the static
single one-dimensional kink solution (4.5) of the (1 + 1)-dimensional sG model.

satisfy the 2DsG system (2.6). By contrast, the representation (3.11), (3.12) determining uξη,
vξη provides a nonlinear superposition principle involving arbitrary functions p(ξ, t), q(η, t).
In particular, the latter may be selected to be solutions of the (1 + 1)-dimensional sine-Gordon
equation in spacetimes {ξ, t}, {η, t} respectively.

In [5], various types of localized excitations have been discussed for (2 + 1)-dimensional
nonlinear systems. However, the interactions of the localized excitations investigated therein
do not possess phase shifts. Nevertheless, because of the arbitrariness of the functions p and q,
there are, in fact, various types of localized excitations that do suffer phase shifts subsequent
to interaction. Possible phase shifts have recently been investigated when the function q is
selected as t-independent and p is selected via the relations

p =
∫ ξ

pxxξ dξ px ≡
M∑

j=1

fj (ξ + vj t) x = ξ +
M∑

j=1

gj (ξ + vj t) (4.3)

where v1 < v2 < · · · < vM are arbitrary constants and {fj , gj },∀j are localized functions with
the properties fj (±∞) = 0, gi(±∞) = G±

i = const. In general terms, if the functions p or q
are taken as multiple localized solutions that possess the phase shifts of (1 + 1)-dimensional
models then the (2 + 1)-dimensional localized solutions involving representations (3.13) inherit
phase shift structure.

Localized solutions of the 2DsG system both with and without completely elastic
interaction may be generated by taking p, q as multi-soliton or multi-kink solutions of
appropriate (1 + 1)-dimensional integrable equations. This is illustrated below in two cases
where p, q are taken as particular solutions of (1 + 1)-dimensional sine-Gordon and KdV
equations.

Here, the interaction behaviour for the ‘potential’ F in (3.11) is considered when p is
taken as the kink–antikink soliton solution of the usual (1 + 1)-dimensional sG model, which
is

p = pkk̄ = 4 arctan
sinh t

cosh ξ
(4.4)

and q is taken as a single static kink solution

q = qk = 4 arctan exp η. (4.5)

The corresponding parameters in (3.11) read

a0 = b0 = 20 a1 = a2 = b1 = b2 = 1 a3 = 1
100 b3 = 9

100 . (4.6)

Figures 1(a) and (b) provide plots of the localized excitation of the 2DsG system at times
t = −8 and t = +8 prior to and following interaction respectively. It is evident that amplitudes
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Figure 2. Pre- and post-interaction of two solitonic excitations (3.11) of the 2DsG system
associated with the specification (4.7) of p and q.

are not preserved, so the interaction is not elastic. Although, the direct use of the functions
pkk̄ and qk as the functions p and q of (3.11) leads here to non-elastic interaction for the two
component localized solutions of the 2DsG system, many kinds of localized solitonic solutions
with completely elastic interaction may, in fact, be generated via pkk̄ and qk. Thus, figure 2
illustrates two solitonic excitations with completely elastic interaction behaviour for F with

p = (pkk̄)ξ q = (qk)η. (4.7)

In figure 3, a completely elastic interaction behaviour is exhibited by four localized
excitations F of the 2DsG system with parametric values given by (4.6) and both p and q being
taken as standard two-soliton solutions of the KdV equation, namely

p = − 1
6 + 2

{
ln

[
1 + exp(ξ) + exp

(
3
2ξ − 15

8 t
)

+ 1
25 exp

(
5
2ξ − 15

8 t
)]}

ξξ
(4.8)

q = − 1
6 + 2

{
ln

[
1 + exp(η) + exp

(
3
2η − 15

8 t
)

+ 1
25 exp

(
5
2η − 15

8 t
)]}

ηη
. (4.9)

In addition to the completely elastic interaction property, phase shifts are observed
following interaction. To reveal the phase shift it has proved convenient to fix one soliton of
the KdV equation (both for p and q) possessing zero velocity. Prior to interaction, the smallest
soliton is static and situated at {ξ = 2 ln 5, η = 2 ln 5}, the largest soliton is moving with its
centre located at

{
ξ = 5

4 t, η = 5
4 t

}
while of the other two coherent solitons one is static and the

other is moving. Their centres are located at
{
ξ = 2 ln 5, η = 5

4 t
}

and
{
ξ = 5

4 t, η = 2 ln 5
}

respectively. From figures 3(e)–(g), it is seen that, following interaction, the static soliton
remains static with shape unchanged but its centre is shifted to {ξ = 0, η = 0}. The largest
soliton recovers its shape but its centre is shifted to

{
ξ = 5

4 t +2 ln 5, η = 5
4 t +2 ln 5

}
. As to the

other two solitons, they also preserve their shapes and velocities (static in one case) but have
their centres shifted to

{
ξ = 0, η = 5

4 t + 2 ln 5
}

and
{
ξ = 5

4 t + 2 ln 5, η = 0
}
, respectively.

In general, if the functions p and q are selected as multi-localized solitonic excitations
with

p|t→∓∞ =
M∑
i=1

p∓
i p∓

i ≡ pi

(
ξ − ci t + δ∓

i

)
(4.10)

q|t→∓∞ =
N∑

j=1

q∓
j q∓

j ≡ qj

(
η − Cj t + �∓

j

)
(4.11)
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Figure 3. Pre- and post-interaction of a four solitonic solution (3.10) for the 2DsG system; p
and q are the two-soliton solutions (4.8) and (4.9) of the KdV equation at times: (a) t = −28,
(b) t = −18, (c) t = −8, (d) t = 0, (e) t = 8, (f ) t = 18 and (g) t = 28.

where {pi, qj } ∀i and j are localized functions, then the potential F expressed by (3.11) delivers
M × N (2 + 1)-dimensional localized excitations with the asymptotic behaviour (a2 = 1)

F |t→∓∞ →
M∑
i=1

N∑
j=1

{
2a(a1a2 − a3a0)p

∓
iξ q

∓
jη(

a0 + a1
(
p∓

i + P∓
i

)
+ a2

(
q∓

j + Q∓
j

)
+ a3

(
p∓

i + P∓
i

)(
q∓

j + Q∓
j

))2

+
2a(b1b2 − b3b0)p

∓
iξ q

∓
jη(

b0 + b1
(
p∓

i + P∓
i

)
+ b2

(
q∓

j + Q∓
j

)
+ b3

(
p∓

i + P∓
i

)(
q∓

j + Q∓
j

))2

}
(4.12)
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≡
M∑

i=1

N∑
j=1

F∓
ij

(
ξ − ci t + δ∓

i , η − Cj t + �∓
j

) ≡
M∑
i=1

N∑
j=1

F∓
ij (4.13)

where

P∓
i =

∑
j<i

pj (∓∞) +
∑
j>i

pj (±∞) (4.14)

Q∓
i =

∑
j<i

qj (∓∞) +
∑
j>i

qj (±∞). (4.15)

In the above, it has been assumed, without loss of generality, that Ci > Cj and ci > cj if
i > j .

From the expression (4.12), if ai, i = 1, 2, 3 and bi, i = 1, 2, 3 are fixed as constants,
then the ijth localized excitation Fij will preserve its shape following interaction iff

P +
i = P−

i Q+
j = Q−

j . (4.16)

The phase shifts of the ijth localized excitation Fij read

δ+
i − δ−

i (4.17)

in the ξ direction and

�+
j − �−

j . (4.18)

in the η direction.
From the above discussion, it is seen that multiple localized excitations F, G are

readily constructed via (1 + 1)-dimensional multiple localized excitations with the properties
(4.10), (4.11) and (4.16). Indeed, any multiple localized solutions (or their derivatives) with
completely elastic interaction behaviour of any known (1 + 1)-dimensional integrable models
can be used to construct (2 + 1)-dimensional multiple dromion type of solutions for the 2DsG
model with completely elastic interaction properties.

In [18], by use of the Lie symmetry approach, it has been established that there exist
certain kinds of plateau and basin-type ring localized excitations of the 2DsG system. In
fact, multiple travelling plateau and basin-type ring soliton solutions can be generated via the
present procedure by taking

f = 1 + iapq g = 1 − iapq (4.19)

and

p =
M∑
i=1

αi exp[r1i − (kiξ − ci t)
2] q =

N∑
j=1

βj exp[r2j − (lj η − Cj t)
2] (4.20)

where a, αi, βj , ki , lj , ci, Cj , r1i and r2j are all arbitrary real constants. The field u is then
given by

u = i ln
f

g
= 2 arctan(apq) (4.21)

= 2 arctan


a

M∑
i=1

N∑
j=1

αiβj exp[r1i + r2j − (kiξ − cit)
2 − (lj η − Cj t)

2]


 . (4.22)

The asymptotic behaviour of the expression (4.22) as t → ±∞ indicates elastic interactions
of the multiple plateau and basin-type soliton solutions (4.22).



Localized excitations of the (2 + 1)-dimensional sine-Gordon system 3885

−30−20−100102030 xi

−20

−10

0

10

20

eta

2u

(a)

−30−20−100102030 xi

−20

−10

0

10

20

eta

2u

(b)

−30−20−100102030 xi

−20

−10

0

10

20

eta

2u

(c)

−30−20−100102030 xi

−20

−10

0

10

20

eta

2u

(d)

−30−20−100102030 xi

−20

−10

0

10

20

eta

2u

(e)

Figure 4. Completely elastic interaction behaviour of two plateau-type ring solitons for the field
u determined by (4.22), (4.23) at times: (a) t = −0.9, (b) t = −0.45, (c) t = 0, (d) t = 0.3 and
(e) t = 0.9.

Figure 4 displays the completely elastic interaction behaviour of two plateau-type solitons
expressed by (4.22) with

a = 200 M = 2 N = 1 α1 = 1/3 α2 = β1 = 1 k1 = k2 = l1 = 1√
10

c2 = −c1 = 20√
10

C1 = 0 r11 = 10 r12 = 2 r21 = 5.
(4.23)

From figure 4, it is readily seen that in addition to the completely elastic interaction
behaviour, the amplitudes (the heights of the plateaus) of the plateau-type ring solitons are
constant in time.

Figure 5 shows the completely elastic interaction behaviour between one plateau-type and
one basin-type solitons expressed by (4.22) with
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Figure 5. Completely elastic interaction behaviour between plateau type and basin type of ring
solitons for the field u determined by (4.22), (4.24) at times: (a) t = −0.6, (b) t = −0.3, (c) t = 0,
(d) t = 0.3 and (e) t = 0.6.

a = 200 M = 2 N = 1 α1 = −1/3 α2 = β1 = 1 k1 = k2 = l1 = 1√
10

c2 = −c1 = 20√
10

C1 = 0 r11 = 5 r12 = 5 r21 = −5.
(4.24)

In [18], it has been established that for certain quantities associated with the 2DsG system,
bowl-type ring solitons can be constructed. In the present context, it is readily seen that the
quantity

w ≡ 1 − cos(2u) (4.25)

with u being given by (4.22) represents a multiple bowl-type ring soliton.
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Figure 6. Completely elastic interaction behaviour between two bowl types of ring solitons for
the quantity w expressed by (4.25) with (4.22) and (4.24) at times: (a) t = −0.6, (b) t = −0.27,
(c) t = 0, (d) t = 0.2, (e) t = 0.3 and ( f ) t = 0.6.

Figure 6 shows the completely elastic interaction properties of two bowl-type solitons for
the quantity w expressed by (4.25) with u given by (4.22) and parametric values as specified
in (4.24).

In [5], saddle type of ring solitons was constructed for a range of (2 + 1)-dimensional
nonlinear systems. It is of interest to determine whether, in addition to the potentials F and G,
there are other quantities that constitute saddle type of ring soliton solutions. Here, in figure 7,
the completely elastic interaction behaviour between two particular saddle types of ring solitons
for the quantity

r ≡ uξuη (4.26)

with u being given by (4.22) corresponding to parametric values (4.24) is exhibited.
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Figure 7. Completely elastic interaction behaviour between two saddle-type ring solitons for the
quantity r determined by (4.26) with (4.22) and (4.24) at times: (a) t = −0.6, (b) t = −0.27,
(c) t = 0, (d) t = 0.2, (e) t = 0.3 and ( f ) t = 0.6.

5. Application of the Moutard transformations

In [10], it has been noted that eigenvectors � = (ϕ1, ϕ2)
T of (2.7) provide complex solutions

ψ = ϕ1 + iϕ2 of the linear equation

ψξη + Uψ = 0 (5.1)

where

U = (v − iu)ξη. (5.2)

The classical Moutard transformation (MT) [21] and its modern variants play an important
role in soliton theory and its underling geometry [21–23]. The classical MT of (5.1) can be
expressed as follows: given solutions ψ and θ1 	= 0 of (5.1), then

ψ(1) = S(θ1, ψ)

θ1
(5.3)
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with bilinear potential

S(a, b) =
∫

(abx − axb) dx + (ayb − aby) dy (5.4)

satisfies (5.1) with the potential U replaced by

U(1) = U + 2(ln θ1)ξη. (5.5)

It is evident that when U transforms according to (5.5), the functions u and v given by (3.1)
transform as

(ũ, ṽ) =
(

u + i ln
θ1

θ̄1
, v + ln θ1θ̄1

)
(5.6)

where {f, g, u1, v1} → {θ1, θ̄1, u, v} and θ̄1 is linked with θ1 by (3.2) with the upper sign.
If we again select the seed solution of the 2DsG as (3.4), then the Lax pair (2.7) possesses

the general solution

ϕ1 = q(η, t) ≡ q ϕ2 = −ip(ξ, t) ≡ −ip (5.7)

ψ = θ1 = q + p (5.8)

with the conditions

qηt + V2ηt q = 0 (5.9)

pξt + V1ξ tp = 0. (5.10)

Two of {p, q, V1, V2}, say, {p, q}, can be taken as arbitrary functions.
On substitution of (5.8) into the MT (5.5), and requiring (5.6) to be a solution of the 2DsG

system, it is seen that

θ̄1 = λ(t)(p − q) (5.11)

where λ(t) is an arbitrary function of t. In the following, we select λ(t) = 1. The next two
MTs applied to the linear problem (5.1) yield, in turn,

ψ(2) = S(θ1, θ2)ψ + S(θ2, ψ)θ1 + S(ψ, θ1)θ2

S(θ1, θ2)
(5.12)

and

ψ(3) = S(θ1, θ2)S(θ3, ψ) + S(θ2, θ3)S(θ1, ψ) + S(θ3, θ1)S(θ2, ψ)

S(θ1, θ2)θ3 + S(θ2, θ3)θ1 + S(θ3, θ1)θ2
(5.13)

with corresponding potentials

U(2) = U + 2[ln S(θ1, θ2)]ξη (5.14)

U(3) = U + 2[ln(S(θ1, θ2)θ3 + S(θ2, θ3)θ1 + S(θ3, θ1)θ2)]ξη. (5.15)

For the related solutions of the 2DsG system with the seed solution U given by (3.4), we have

θi = pi(ξ, t) + qi(η, t) ≡ pi + qi (5.16)

θ̄ i = pi(ξ, t) − qi(η, t) i = 1, 2, 3 (5.17)

qiηt + V2ηt qi = 0 piξt + V1ξ tpi = 0 (5.18)

S(θi, θj ) = 2
∫

pipjξ dξ − 2
∫

qiqjη dη − (pi − qi)(pj + qj ) (5.19)
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S̄(θ̄ i, θ̄ j ) = 2
∫

pipjξ dξ − 2
∫

qiqjη dη − (pi + qi)(pj − qj ). (5.20)

u(2) = i ln
S(θ1, θ2)

S̄(θ̄1, θ̄2)
(5.21)

v(2) = V1 + V2 + ln[S(θ1, θ2)S̄(θ̄1, θ̄2)] (5.22)

u(3) = i ln[S(θ1, θ2)θ3 + S(θ2, θ3)θ1 + S(θ3, θ1)θ2]

− i ln[S̄(θ̄1, θ̄2)θ̄3 + S̄(θ̄2, θ̄ 3)θ̄1 + S̄(θ̄3, θ̄1)θ̄2] (5.23)

v(3) = ln[S(θ1, θ2)θ3 + S(θ2, θ3)θ1 + S(θ3, θ1)θ2]

+ ln[S̄(θ̄1, θ̄2)θ̄3 + S̄(θ̄2, θ̄3)θ̄1 + S̄(θ̄3, θ̄1)θ̄2] + V1 + V2. (5.24)

It is emphasized that, for the complex 2DsG system, pi and qi may be complex functions, then
θ̄ i and S̄(θ̄ i , θ̄ j ) are not generally proportional to the complex conjugates of θi and S(θi, θj ).
However, for the real 2DsG system, θ̄ i and S̄(θ̄ i, θ̄ j ) must be proportional to the complex
conjugates of θi and S(θi, θj ). And for the real 2DsG system the results of the Moutard
transformation have been given by many authors [8, 10, 13, 14].

The final fact that should be pointed out is that the variable separation solution (3.1) with
(3.4), (3.6)–(3.8) obtained by the multi-linear variable separation approach is equivalent to
that of a special case of the second step Moutard transformation (the author is indebted to
Wolfgang Schief for this observation) by taking p1 = q2 = 0,

q1 = α1q + α0

α2q + α3
p2 = β1p + β0

β2p + β3

with the suitable selections of the constants αi, βi, i = 1, 2, 3, 4 and the redefinitions of the
functions V1 and V2.

6. Summary and discussion

In summary, some types of variable separation solutions can be obtained for the 2DsG system
via some different ways such as the multi-linear variable separation approach and the Moutard
transformation. The usual ‘universal’ quantity valid for many other (2 + 1)-dimensional
systems is included as a special example of the variable separation solutions for the potentials
F and G. For the 2DsG model, two (2 + 1)-dimensional exact solutions with some special
conditions can be linearly combined to get new exact solutions. In the variable separation
solutions obtained from the multi-linear variable separation approach, there are two (1 + 1)-
dimensional arbitrary functions. The more variable separated functions can be included in the
variable separation solutions via Moutard transformation. The Moutard transformations are
given generally for the complex 2DsG system. Whence the real condition of the 2DsG system
is used, the Moutard transformations given here reduce back to the known ones [13]. The
variable separation solutions obtained by the multi-linear variable separation approach can be
considered as an equivalent special case of the second step Moutard transformation.

Though many kinds of localized excitations for a diversity of (2 + 1)-dimensional models
have been obtained from the variable separation solutions [5], it is still not clear to construct
the solitonic solutions such that the interactions are completely elastic. In this paper, a
general convenient method is proposed to construct infinitely many kinds of multiple localized
excitation with completely elastic interaction behaviours and this method is valid for all the
models listed in [5]. Especially, for the 2DsG system, it is proved that the plateau type, basin
type, bowl type and saddle type of ring shape excitations [18] are really solitons because of
their completely interacting behaviours.
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There are various important problems for (2 + 1)-dimensional integrable systems which
are still open and worth studying further. For instance, for the 2DsG system two universal
terms (every term is related to an exact solution) can be linearly combined to construct new
exact solutions. Are there any other systems possessing this property? Though the variable
separation approach has been applied to various (2 + 1)-dimensional integrable systems,
some of other (2 + 1)-dimensional integrable systems, especially, the Kadomtsev–Petviashvili
equation and the Sawada–Kortera model have not yet been solved via this approach. Can
we solve all the (2 + 1)-dimensional integrable models via multiple linear variable separation
approach? Are there any relations among the variable separation approach solvability and the
usual integrability?
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